- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ghosh, Anish (2)
-
Kelmer, Dubi (2)
-
Yu, Shucheng (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We establish effective versions of Oppenheim’s conjecture for generic inhomogeneous quadratic forms. We prove such results for fixed quadratic forms and generic shifts. Our results complement our previous paper [13] where we considered generic forms and fixed shifts. In this paper, we use ergodic theorems and in particular we establish a strong spectral gap with effective bounds for some representations of orthogonal groups, which do not possess Kazhdan’s property $(T)$.more » « less
-
Ghosh, Anish; Kelmer, Dubi; Yu, Shucheng (, International Mathematics Research Notices)Abstract We establish effective versions of Oppenheim’s conjecture for generic inhomogeneous quadratic forms. We prove such results for fixed shift vectors and generic quadratic forms. When the shift is rational we prove a counting result, which implies the optimal density for values of generic inhomogeneous forms. We also obtain a similar density result for fixed irrational shifts satisfying an explicit Diophantine condition. The main technical tool is a formula for the 2nd moment of Siegel transforms on certain congruence quotients of $$SL_n(\mathbb{R}),$$ which we believe to be of independent interest. In a sequel, we use different techniques to treat the companion problem concerning generic shifts and fixed quadratic forms.more » « less
An official website of the United States government
